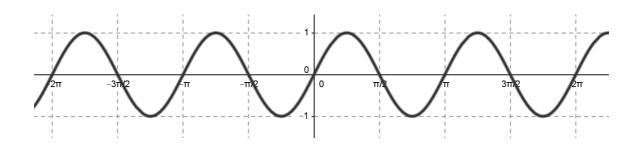


Universidad de Costa Rica Instituto Tecnológico de Costa Rica



MATEM 2015

-Undécimo Año-

III EXAMEN PARCIAL

Nombre:	código:		
Colegio:			

Fórmula

1

Miércoles 07 de octubre

INSTRUCCIONES

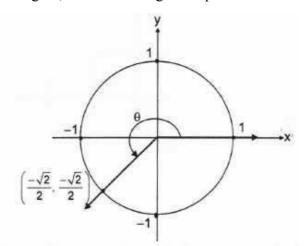
- 1. El tiempo máximo para resolver este examen es de 3 horas.
- 2. Lea cuidadosamente cada instrucción y cada pregunta antes de contestar.
- 3. Este examen consta de dos partes y un total de 50 puntos. La primera de ellas es de selección única (38 puntos) y la segunda es de desarrollo (12 puntos).
- 4. La parte de selección debe ser contestada en la hoja de respuestas que se le dará para tal efecto.
- 5. En el desarrollo debe escribir, en el espacio indicado, su nombre, código y el nombre del colegio en el cual usted está matriculado. En caso de no hacerlo, usted asume la responsabilidad sobre los problemas que se pudieran suscitar por esta causa.
- 6. En las preguntas de selección, usted deberá rellenar con lápiz, en la hoja de respuestas, la celda que contiene la letra que corresponde a la opción que completa en forma correcta y verdadera la expresión dada. Si lo desea, puede usar el espacio al lado de cada ítem del folleto de examen para escribir cualquier anotación que le ayude a encontrar la respuesta. Sin embargo, sólo se calificarán las respuestas seleccionadas y marcadas en la hoja para respuestas.
- 7. En las preguntas de desarrollo debe aparecer todo el procedimiento que justifique correctamente la solución y la respuesta de cada uno de ellos. Utilice únicamente bolígrafo de tinta azul o negra.
- 8. Trabaje con el mayor orden y aseo posible. Si alguna **pregunta** está **desordenada**, ésta, **no se calificará**.
- 9. Recuerde que la calculadora que puede utilizar es aquella que contiene únicamente las operaciones básicas.
- 10. Trabaje con calma. Le deseamos el mayor de los éxitos.

PRIMERA PARTE. SELECCIÓN ÚNICA (Valor 38 puntos)

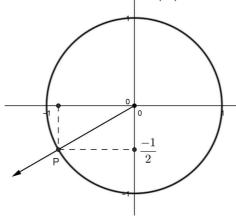
Puede usar el espacio al lado de cada ítem para escribir cualquier anotación que le ayude a encontrar la respuesta. Sin embargo, sólo se calificarán las respuestas seleccionadas y marcadas en la hoja para respuestas.

Trigonometría

1. Considere los siguientes números reales:


$$x = \frac{7\pi}{3} \qquad \text{y} \qquad z = 1,55$$

¿A cuáles de ellos corresponde un punto de la circunferencia trigonométrica en el primer cuadrante?


- (A) Sólo x.
- (B) Sólo z.
- (C) Ambos.
- (D) Ninguno.

2. De acuerdo con los datos de la figura, el valor del ángulo θ puede ser

- $(A) \quad -\frac{9\pi}{4}$
- (B) $\frac{3\pi}{4}$
- (C) $\frac{5\pi}{4}$
- (D) $-\frac{13\pi}{4}$

- 3. Si al número real x le corresponde, en la circunferencia trigonométrica, el punto de primer cuadrante (a,b), entonces al número real $x-\pi$ le corresponde el punto
- (A) (a,b)
- (B) $\left(-a,b\right)$
- (C) (a,-b)
- (D) $\left(-a,-b\right)$
 - 4. Si x es un número real tal que 0 < sen(x) < 1 y -1 < cos(x) < 0 puede asegurar que un número positivo es
- (A) sec(x)
- (B) $\csc(x)$
- (C) $\cot(x)$
- (D) tan(x)
 - 5. De acuerdo con los datos de la figura adjunta, si al número real α le corresponde el punto P en la circunferencia, entonces el valor de $\cot(\alpha)$ es
- (A) $\sqrt{3}$
- (B) $\frac{\sqrt{3}}{3}$
- (C) $-\sqrt{3}$
- (D) $\frac{-\sqrt{3}}{3}$

6. El valor de $\tan\left(\frac{-17\pi}{3}\right)$ es igual a

- (A) $\sqrt{3}$
- (B) $\frac{\sqrt{3}}{3}$
- (C) $-\sqrt{3}$
- (D) $\frac{-\sqrt{3}}{3}$

7. La expresión $\frac{\sin(20\pi) - \cos(23\pi)}{\cos(2016\pi)}$ es igual a

- (A) 1
- (B) 2
- (C) 0
- (D) -1

8. Considere los siguientes números:

I.
$$x = \csc\left(\frac{7\pi}{3}\right)$$

II.
$$y = \sec\left(\frac{7\pi}{3}\right)$$

¿Cuáles de los números anteriores son mayores que 1?

- (A) Sólo x.
- (B) Sólo y.
- (C) Ambos.
- (D) Ninguno.

Considere la función $f: \mathbb{R} \to \mathbb{R}$, $f(x) = -3 \cdot sen\left(5x + \frac{\pi}{2}\right) - 2$ y con base en ella responda los ítems 9, 10 y 11.

- 9. El periodo de f es
- (A) 2π
- (B) $\frac{2\pi}{5}$
- (C) $\frac{3\pi}{5}$
- (D) $\frac{\pi}{2}$
 - 10. El ámbito de f corresponde a
- (A) [-3,3]
- (B) $\left[-2,2\right]$
- (C) [-1,5]
- (D) [-5,1]
 - 11. La gráfica de f interseca al eje Y en el punto
- $(A) \quad (0,1)$
- (B) (0,-3)
- (C) (0,-2)
- (D) (0,-5)

- 12. Considere la función $f: \left[\frac{-\pi}{3}, 2\pi \right[\to \mathbb{R}, \ f(x) = senx \ y \ analice las siguientes proposiciones:$
 - I. −1 tiene dos preimágenes.

II.
$$f(x) < 0$$
 para $x \in \left[\frac{-\pi}{3}, 0 \right]$

¿Cuáles de las proposiciones anteriores son verdaderas?

- (A) Ambas
- (B) Ninguna
- (C) Sólo la I
- (D) Sólo la II
 - 13. Un número real que NO pertenece al dominio máximo de la función $f(x) = \tan(x)$ es
- (A) $\frac{\pi}{4}$
- (B) $\frac{\pi}{2}$
- (C) π
- $(D) \quad 0$
 - 14. Considere la función $f: \mathbb{R} \to \mathbb{R}$, $f(x) = \cos x$. ¿Cuál de las siguientes afirmaciones es **falsa**?
- (A) $f(-\pi) = -1$
- (B) $f\left(\frac{5\pi}{2}\right) = 0$
- (C) f es creciente en $\left| \frac{-\pi}{2}, \frac{\pi}{2} \right|$
- (D) f es decreciente en $\left] \frac{-3\pi}{2}, -\pi \right[$

15. Un intervalo donde es **creciente** la función f con criterio $f(x) = \sec x$, definida en su dominio máximo, corresponde a

(A)
$$\left] \frac{-5\pi}{2}, -2\pi \right[$$

(B)
$$\left] \frac{-3\pi}{2}, -\pi \right[$$

(C)
$$\left]\pi, \frac{3\pi}{2}\right[$$

(D)
$$\left| \frac{-\pi}{2}, 0 \right|$$

16. La expresión $sen\left(\frac{\pi}{2} + x\right) - \cos\left(\frac{\pi}{2} + x\right)$ es equivalente a

(A)
$$\cos x + \sin x$$

(B)
$$\cos x - senx$$

(C)
$$2\cos x + 2\sin x$$

(D)
$$2\cos x - 2\sin x$$

17. La expresión $\cot x + \frac{sen x}{1 + \cos x}$ es equivalente a

(A)
$$\csc x$$

(B)
$$\sec x$$

(C)
$$\frac{\cos x}{1 + \cos x}$$

(D)
$$\frac{2 \operatorname{sen} x}{1 + \cos x}$$

18. La expresión $(senx + cos x)^2 - sen(2x)$ es igual a

(B)
$$-1$$

(C)
$$\sin^2 x - \cos^2 x$$

(D)
$$1 - 2senx \cdot cos x$$

19. La expresión $\cos^4 x - sen^4 x$ es equivalente a

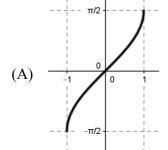
- (A) $\cos(4x)$
- (B) $\cos(2x)$
- (C) sen(2x)
- (D) $-\cos(2x)$

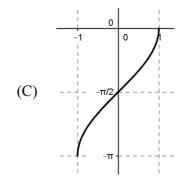
20. La expresión $\frac{\sec x}{senx} - \frac{senx}{\cos x}$ es equivalente a

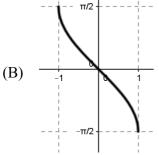
- (A) $\tan x$
- (B) $\csc x$
- (C) $\cot x$
- (D) $\cos x$

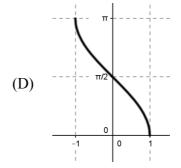
21. El conjunto solución de la ecuación $tan^2 x = -sec^2 x - 1$ corresponde a

- (A) \emptyset
- (B) ℝ
- (C) $\left\{\frac{\pi}{4}, \frac{5\pi}{4}\right\}$
- (D) $\left\{ \frac{\pi}{4}, \frac{3\pi}{4}, \frac{5\pi}{4}, \frac{7\pi}{4} \right\}$


22. El conjunto solución de tan(x) = 2 - tan(x) en $[0, 2\pi]$, corresponde a


- (A) $\left\{\frac{\pi}{4}, \frac{5\pi}{4}\right\}$
- (B) $\left\{\frac{\pi}{4}, \frac{7\pi}{4}\right\}$
- (C) $\left\{\frac{3\pi}{4}, \frac{5\pi}{4}\right\}$
- (D) $\left\{\frac{3\pi}{4}, \frac{7\pi}{4}\right\}$


23. La ecuación $\frac{2}{\sec^2 x} = \frac{1}{\sec x}$ en $[0,\pi]$ tiene la siguiente cantidad de soluciones

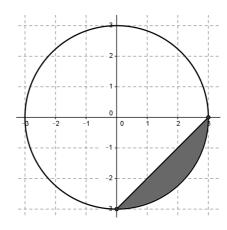

- (A) 1
- (B) 2
- (C) 3
- (D) 4

24. ¿Cuál de las siguientes gráficas corresponde a una función con criterio $f(x) = \arccos(x)$?

25. Para la función $f:[-1,1] \to \left[\frac{-\pi}{2}, \frac{\pi}{2}\right]$, $f(x) = \arcsin(x)$ es verdadero que

- (A) f(x) < 0, para todo x
- (B) $f\left(\frac{-\pi}{2}\right) = 1$
- (C) $f(1) = \frac{\pi}{2}$
- (D) f(0) = 1

26. El valor de $\arcsin\left(\frac{-1}{2}\right)$ es

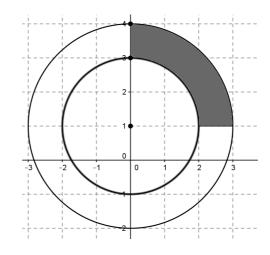

- (A) $\frac{\pi}{6}$
- (B) $-\frac{\pi}{6}$
- (C) $\frac{\pi}{3}$
- (D) $-\frac{\pi}{3}$

27. El valor de $\arctan(1) - \arctan(-1)$ es

- (A) $\frac{\pi}{4}$
- (B) $\frac{\pi}{2}$
- (C) π
- (D) 0

28. En la figura, el centro de la circunferencia está en el origen de coordenadas, el área de la región sombreada es aproximadamente

- (A) 23,77
- (B) 11,57
- (C) 2,57
- (D) 1,93


29. En la figura se presentan dos circunferencias concéntricas cuyo centro se ubica en (0,1), el área de la región sombreada es igual a

(C)
$$\frac{5\pi}{2}$$

(D)
$$\frac{9\pi}{4}$$

30. El área de un sector circular es $\frac{25\pi}{8}$ y la longitud de su arco es $\frac{5\pi}{4}$. Entonces, la medida del radio de dicho sector corresponde a

- (A) 3
- (B) 4
- (C) 5
- (D) 6

31. La altura de un triángulo equilátero es 15 cm, el área de dicho triángulo es igual a

- (A) $675\sqrt{3} \text{ cm}^2$
- (B) $75\sqrt{3} \text{ cm}^2$
- (C) $150\sqrt{3} \text{ cm}^2$
- (D) $\frac{675}{3}\sqrt{3} \text{ cm}^2$

32. Un hexágono regular está circunscrito en una circunferencia de radio $2\sqrt{3}$ cm. ¿Cuál es el área, en centímetros cuadrados, del hexágono?

- (A) $9\sqrt{3}$
- (B) $18\sqrt{3}$
- (C) $36\sqrt{3}$
- (D) $24\sqrt{3}$

33. ¿Cuál es la longitud aproximada de la circunferencia circunscrita a un decágono regular si la medida de su apotema es 12?

Puede utilizar que: $\cos(18^\circ) = 0.951$ $\tan(18^\circ) = 0.325$ $\tan(54^\circ) = 1.376$.

- (A) 79,25
- (B) 93,13
- (C) 128,24
- (D) 243,92

34. Un cuadrado está inscrito en una circunferencia que mide $6\pi\sqrt{2}~cm$. El área del círculo inscrito a ese cuadrado es igual a

- (A) $18\pi \ cm^2$
- (B) $9\pi \ cm^2$
- (C) $27\pi \ cm^2$
- (D) $36\pi \ cm^2$

35. Un armario tiene forma de prisma recto de base cuadrada. Dos de sus caras laterales serán completamente recubiertas con una delgada lámina sintética. Si la altura del armario es 2,10 m y el área de su base es $0,09 m^2$, entonces, ¿Cuánto mide, en metros cuadrados, la superficie que será recubierta por la lámina?

- (A) 1,26
- (B) 1,89
- (C) 2,52
- (D) 2,70

- 36. La generatriz de un cono circular recto mide $\sqrt{80}$ cm y la altura mide igual que el radio de la base. El **área lateral** de dicho cono es aproximadamente
- (A) $112,40 \text{ cm}^2$
- (B) $177,72 \text{ cm}^2$
- (C) $303,23 \text{ cm}^2$
- (D) $357,77 \text{ cm}^2$
 - 37. Si el volumen de una esfera es 288π cm³, entonces su área es igual a
- (A) $576\pi \text{ cm}^2$
- (B) $288\pi \ cm^2$
- (C) $36\pi \ cm^2$
- (D) $144\pi \ cm^2$
 - 38. El volumen de un cilindro recto es 90π cm^3 y su altura mide 10 cm . El área lateral de dicho cilindro es igual a
- (A) $69\pi \ cm^2$
- (B) $60\pi \ cm^2$
- (C) $30\pi \ cm^2$
- (D) $36\pi \text{ cm}^2$

Fin de la primera parte

Universidad de Costa Rica Instituto Tecnológico de Costa Rica

TERCER EXAMEN PARCIAL 2015 - miércoles 07 de octubre

Nombre completo:	 CÓDIGO:	
COLEGIO:		

SEGUNDA PARTE. DESARROLLO (Valor 12 puntos)

Resuelva en forma clara y ordenada cada uno de los siguientes problemas, deben aparecer todos los procedimientos realizados para llegar a la respuesta.

1. (6 puntos) Una pirámide recta tiene como base un triángulo equilátero de área $75\sqrt{3}$ cm². Si la altura de la pirámide es 10 cm, determine el área lateral y el volumen de dicha pirámide.

2. (6 puntos) Determine el conjunto de <u>todos los números reales</u> que son solución de la ecuación:

$$(\tan x + \sqrt{3})(2\cos x - 1) = 0$$