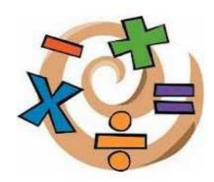


Universidad de Costa Rica – Instituto Tecnológico de Costa Rica Escuelas de Matemática Proyecto MATEM 2012

http://matem.emate.ucr.ac.cr/ tel. (506) 2511-4528



MA-0125 MATEMÁTICA ELEMENTAL -Décimo Año-

I EXAMEN PARCIAL 2012

Nombre:	Código:					
	<u> </u>					
Colegio:						

Fórmula

1

Sábado 14 de abril del 2012

INSTRUCCIONES

- 1. El tiempo máximo para resolver este examen es de 3 horas.
- 2. Lea cuidadosamente, cada instrucción y cada pregunta, antes de contestar.
- 3. Este examen consta de dos partes. La primera de ellas es de selección y está constituida por 32 ítems y la segunda es de desarrollo y la conforman 3 ítems.
- 4. La parte de selección debe ser contestada en la hoja de respuestas que se le dará para tal efecto.
- 5. En el desarrollo debe escribir, en el espacio indicado, su nombre, código y el nombre del colegio en el cual usted está matriculado. En caso de no hacerlo, usted asume la responsabilidad sobre los problemas que se pudieran suscitar por esta causa.
- 6. En los ítems de selección, usted deberá rellenar con lápiz, en la hoja de respuestas, la celda que contiene la letra que corresponde a la opción que completa en forma correcta y verdadera la expresión dada. Si lo desea, puede usar el espacio al lado de cada ítem del folleto de examen para escribir cualquier anotación que le ayude a encontrar la respuesta. Sin embargo, sólo se calificarán las respuestas seleccionadas y marcadas en la hoja para respuestas.
- 7. En los ítems de desarrollo debe aparecer todo el procedimiento que justifique correctamente la solución y la respuesta de cada uno de ellos. Utilice únicamente bolígrafo de tinta azul o negra.
- 8. Trabaje con el mayor orden y aseo posible. Si alguna **pregunta** está **desordenada**, ésta, **no se calificará**.
- 9. Recuerde que la calculadora que puede utilizar es aquella que permite realizar únicamente las operaciones básicas.
- 10. Trabaje con calma y le deseamos el mayor de los éxitos.

PRIMERA PARTE. SELECCIÓN ÚNICA (Valor 32 puntos)

Puede usar el espacio al lado de cada ítem para escribir cualquier anotación que le ayude a encontrar la respuesta. Sin embargo, sólo se calificarán las respuestas seleccionadas y marcadas en la hoja para respuestas.

- 1. Al factorizar completamente $x^2y + xy^2 + 2xy 3x 3y 6$ uno de los factores corresponde a
- (A) xy-2
- (B) x + y 3
- (C) x-3
- (D) x + y + 2
- 2. Sea P(x) un polinomio cuyos ceros son 1, 2, y 3. Con certeza uno de los factores de $P(x)+4-x^2$ es
- (A) x+4
- (B) x+2
- (C) x-2
- (D) x+3
- 3. Sea $n \in \mathbb{N}^*$. Uno de los factores de $2y x^n y^n + 2x^n y^{n+1} 1$ es
- $(A) \quad x^n y^n + 1$
- (B) 2y+1
- (C) $x^n + 2y 1$
- (D) $x^n y 1$

- 4. La expresión $\frac{2x^2 7x 4 + (1 + 2x)}{4x^2 + 2x (1 + 2x)}$ es equivalente a
- (A) $\frac{x-4}{2x}$
- (B) $\frac{2x^2 7x 3}{4x^2 + 2x 1}$
- (C) $\frac{-7x-3}{3x-1}$
- (D) $\frac{x-3}{2x-1}$
- 5. La expresión $-\frac{10x+21}{x^2-10x+21} + \frac{2x-7}{x-7}$ es equivalente a
- (A) $-\frac{-3x+2x^2+42}{(x-3)(x-7)}$
- (B) $\frac{2x^2 23x}{(x-3)(x-7)}$
- (C) $\frac{-3x-7x^2+2x^3+14}{(x-1)(x-7)(x+1)}$
- (D) $\frac{x+2x^2-2}{(x-1)(x+1)}$

- 6. Sea P(x) un polinomio. La expresión $\frac{P(x)}{x^2 25} \div \frac{(x^2 12x + 35)P(x)}{x^2 + 10x + 25}$ es equivalente a
- (A) $\frac{x+5}{(x-5)^2(x-7)}$
- (B) $\frac{x-7}{(x+5)^3}$
- (C) $\frac{(x+5)(P(x))^2}{(x-5)^2(x-7)}$
- (D) $\frac{-10x-25}{(12x-35)(x-5)(x+5)}$
- 7. El conjunto solución de la ecuación x(x-1) = x(x-1) corresponde a
- (A) \mathbb{R}
- (B) $\{0,1\}$
- (C) $\mathbb{R} \{0,1\}$
- (D) Ø
- 8. El conjunto solución de la ecuación $\frac{(x-1)^2(x-2)^3}{(x-1)(x-2)} = 0$ es
- (A) \mathbb{R}
- (B) $\{1,2\}$
- (C) $\mathbb{R} \{1, 2\}$
- (D) Ø

- 9. Una solución de la ecuación x(x+7)=9 corresponde a
- (A) -7
- (B) 0
- (C) $\frac{1}{2}\sqrt{85} \frac{7}{2}$
- (D) $-\frac{1}{2}\sqrt{85} + \frac{7}{2}$
- 10. Una solución de la ecuación $\frac{x(x-16)+8x-9}{x^2-16x+63} = 0$ corresponde a
- (A) 9
- (B) -1
- (C) 7
- (D) 16
- 11. Considere las siguientes afirmaciones
 - I. Una solución de la ecuación $x^2 + 2x = x(x+2)$ es 5
 - II. La ecuación $(x-2)^6+1=0$ no tiene soluciones

¿Cuáles afirmaciones son verdaderas?

- (A) Sólo la I
- (B) Sólo la II
- (C) I y II
- (D) Ninguna

- 12. Sea P(x) un polinomio tal que para todo $x \in \mathbb{R}$ se tiene que P(x) < -5. El conjunto solución de la ecuación $(x^2 4)P(x) = 0$ corresponde a
- (A) \mathbb{R}
- (B) $\{2,-2\}$
- (C) $\mathbb{R} \{2, -2\}$
- (D) Ø
- 13. El conjunto solución de la ecuación $x^5 7x^4 + x^3 7x^2 = 0$ tiene
- (A) 5 elementos
- (B) 4 elementos
- (C) 3 elementos
- (D) 2 elementos
- 14. El siguiente número real **NO** es solución de la ecuación $\frac{(x^2-9)(x^2-25)}{x^2-14x+33} = 0$
- (A) 3
- (B) 5
- (C) -3
- (D) -5
- 15. El número de soluciones de la ecuación $\sqrt{-x+5} = x-3$ es
- (A) 0
- (B) 1
- (C) 2
- (D) 3

- 16. Sea $P(x) = 3x^3 + 2ax^2 13x + 3a$. Si $\frac{2}{3}$ es un cero de P(x), entonces una solución de la ecuación P(x) = 0 es
- (A) -3
- (B) -1
- (C) $-\frac{2}{3}$
- (D) 2
- 17. Una solución de la ecuación $\sqrt{x^2 + \sqrt{2x + 3}} = 1 + x$ es un numero real
- (A) menor que 0
- (B) entre 0 y 1
- (C) entre 1 y 3
- (D) mayor a 3
- 18. El conjunto solución de la ecuación $|x^2 13x| = -40$ tiene
- (A) 4 elementos
- (B) 2 elementos
- (C) 1 elemento
- (D) 0 elementos
- 19. Sea P(x) un polinomio de grado n. El conjunto solución de la ecuación |P(x)| + 6 = 0 tiene
- (A) *n* elementos
- (B) 2n elementos
- (C) 0 elementos
- (D) n-1 elementos

- 20. El conjunto solución de la ecuación |5-13x|=4 tiene
- (A) 4 elementos
- (B) 2 elementos
- (C) 1 elemento
- (D) 0 elementos
- 21. El conjunto solución de la inecuación $|x-2| \ge -5$ es
- (A) \mathbb{R}
- (B) $\left[-2,+\infty\right[$
- (C) [-2,2]
- (D) Ø
- 22. El conjunto solución de la inecuación $\frac{4}{(x-1)^2} \ge -9$ es
- (A) Ø
- (B) $\left[\frac{1}{3}, +\infty\right]$
- (C) $\mathbb{R} \{1\}$
- (D) \mathbb{R}
- 23. El conjunto solución de la inecuación $x^2 + 11x \ge -24$ es
- (A)]-8,-3[
- (B) $]-\infty, -8] \cup [-3, +\infty[$
- (C) [-8, -3]
- (D) $]-\infty,-11] \cup [0,+\infty[$

- 24. En la ecuación $ax^2 + ax + 11 = 0$ con incógnita x y la constante a < 0, se puede asegurar que tiene
- (A) dos soluciones idénticas
- (B) dos soluciones distintas
- (C) no tiene soluciones en \mathbb{R}
- (D) tres soluciones distintas
- 25. En la ecuación $x^2 + 2ax + a \frac{1}{4} = 0$ con incógnita x, el conjunto de posibles valores de a para que la ecuación tenga como máximo una solución es
- (A) $\left[-\frac{\sqrt{2}}{2} + \frac{1}{2}, \frac{\sqrt{2}}{2} + \frac{1}{2} \right]$
- (B) Ø
- (C) $\left\{\frac{1}{2}\right\}$
- (D) \mathbb{R}
- 26. El conjunto solución de la inecuación $\frac{4-x}{x^2-7x+12} \ge \frac{2}{x-3}$ es
- (A) $]-\infty,3[$
- (B) [3,4]
- (C)]3,4[
- (D) $]-\infty,3]$

- 27. El conjunto solución de la inecuación $\frac{(2-x)^3(x^2+7)}{(x^2-9)^5} < 0$ es
- $(A) \quad \left] -\sqrt{7}, 2 \right[\ \bigcup \ \left] \sqrt{7}, \infty \right[$
- (B) $\left] -3, -\sqrt{7} \right[\bigcup \left] 2, \sqrt{7} \right[\bigcup \left] 3, \infty \right[$
- (C) $]-3,2[\cup]3,\infty[$
- (D) $]2,\infty[$
- 28. El conjunto solución de la inecuación $\frac{x-3}{x^2-5x+6} \ge 0$ es
- (A)]2,∞[
- (B)]3,∞[
- (C) $]2,\infty[-\{3\}]$
- (D) $[3, \infty[$
- 29. Sea S el conjunto solución de la inecuación $\frac{(x-3)^2(x+1)}{(x^2+2x+3)(x-1)} \ge 0$. Considere las siguientes afirmaciones.
 - I. $1 \in S$
 - II. Si x > 1 entonces $x \in S$
 - III. $0 \in S$

¿Cuáles afirmaciones son verdaderas?

- (A) Sólo la II
- (B) Sólo la III
- (C) I y II
- (D) Ninguna

30. El conjunto solución de la inecuación $|4-x|-2 \ge 3$ es

- (A) $]-\infty,-1[\bigcup]9,\infty[$
- (B)]-1,9[
- (C) [-1,9]
- (D) $]-\infty,-1] \cup [9,\infty[$

31. El conjunto solución de la inecuación $\sqrt{(x-1)^2} < 5$ es

- (A) \mathbb{R}
- (B) $]-\infty, 6[$
- (C)]-4,6[
- (D) $]-\infty, -4[\bigcup]6, \infty[$

32. El conjunto solución de la inecuación -|2-x|+5>2 es

- (A) ℝ
- (B)]-1,5[
- (C) $]-\infty,-1[\bigcup]5,\infty[$
- (D) Ø

Fin de la I parte

Universidad de Costa Rica – Instituto Tecnológico de Costa Rica Escuelas de Matemática Proyecto MATEM 2012

http://matem.emate.ucr.ac.cr/ tel. (506) 2511-4528

PRIMER EXAMEN PARCIAL 2012 - Sábado 14 de abril

Nombre completo:	
COLEGIO:	

PREGUNTA	Puntos obtenidos
1	
2	
3	
TOTAL	

SEGUNDA PARTE. DESARROLLO (Valor 17 puntos)

Resuelva en forma clara y ordenada cada uno de los siguientes problemas, deben aparecer todos los procedimientos realizados para llegar a la respuesta.

1. Racionalice y simplifique la siguiente expresión algebraica

$$\frac{xy^2 - y}{\sqrt[3]{x^2} \left(\sqrt{xy} - 1\right)}$$

2. Se tiene un terreno rectangular de dimensiones 30m por 25m. el terreno se rodeó externamente por un camino de ancho uniforme. Si se sabe que el área del camino es de $250m^2$, determine aproximadamente el ancho del camino. (6 puntos)

3. Resuelva la inecuación $\frac{(x+6)(x-a)}{(x-b)} \ge 0$ donde a > b > 0. (5 puntos)

Universidad de Costa Rica Escuela de Matemática Proyecto MATEM 2011

SOLUCIONARIO

PRIMER EXAMEN PARCIAL 2012 - Sábado 14 de abril

Selección única

1	D	8	D	15	В	22	C	29	A	
2	C	9	C	16	Α	23	В	30	D	
3	Α	10	В	17	В	24	В	31	С	
4	D	11	C	18	D	25	C	32	В	
5	В	12	В	19	С	26	A			
6	A	13	D	20	В	27	С			
7	Α	14	A	21	Α	28	С			

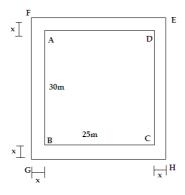
Desarrollo

1. Racionalice y simplifique la siguiente expresión algebraica

$$\frac{xy^2 - y}{\sqrt[3]{x^2} \left(\sqrt{xy} - 1\right)}$$

Note que

$$\frac{xy^{2} - y}{\sqrt[3]{x^{2}} \left(\sqrt{xy} - 1\right)} = \frac{xy^{2} - y}{\sqrt[3]{x^{2}} \left(\sqrt{xy} - 1\right)} \frac{\sqrt[3]{x} \left(\sqrt{xy} + 1\right)}{\sqrt[3]{x} \left(\sqrt{xy} + 1\right)}$$


$$= \frac{\left(xy^{2} - y\right) \sqrt[3]{x} \left(\sqrt{xy} + 1\right)}{x \left(xy - 1\right)}$$

$$= \frac{y \left(xy - 1\right) \sqrt[3]{x} \left(\sqrt{xy} + 1\right)}{x \left(xy - 1\right)}$$

$$= \frac{y \sqrt[3]{x} \left(\sqrt{xy} + 1\right)}{x}$$

2. Se tiene un terreno rectangular de dimensiones 30m por 25m. el terreno se rodeo externamente por un camino de ancho uniforme. Si se sabe que el área del camino es de $250m^2$, determine aproximadamente el ancho del camino.

Sea *x* el ancho del camino. En la figura siguiente ABCD representa el terreno.

Nótese que el área de EFGH es

$$25 \cdot 30 + 250 = (25 + 2x)(30 + 2x)$$

Esta ecuación es equivalente a

$$-4x^2 - 110x + 250 = 0$$

Las soluciones de la ecuación son $-\frac{55}{4} \pm \frac{5}{4} \sqrt{161}$. Como $-\frac{55}{4} - \frac{5}{4} \sqrt{161}$ es negativo, se tiene que.

$$x = \frac{5}{4}\sqrt{161} - \frac{55}{4}m \approx 211cm$$

3. Resuelva la inecuación
$$\frac{(x+6)(x-a)}{(x-b)} \ge 0$$
 donde $a > b > 0$. (5 puntos)

Note que los factores del numerador y denominador se hacen cero en -6, a y b, que de acuerdo a lo indicado estos están ordenados así

$$-6 < b < a$$

Sea $f(x) = \frac{(x+6)(x-a)}{(x-b)}$, note que $D_f = \mathbb{R}$ - $\{b\}$ y el signo de f está dado por la siguiente tabla

-∝	-	-6	b i	a +∞
x+6	-	+	+	+
x-a	1	-	-	+
x-b	-	-	+	+
f(x)	-	+	-	+

Por lo tanto el conjunto solución de $f(x) \ge 0$ es

$$S = [-6, b] \cup [a, +\infty]$$